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Abstract

In October 2016, the American Association for Cancer
Research held a meeting of international childhood cancer pre-
disposition syndrome experts to evaluate the current knowledge
of these syndromes and to propose consensus surveillance
recommendations. Herein, we summarize clinical and genetic
aspects of RASopathies and Sotos, Weaver, Rubinstein-Taybi,
Schinzel-Giedion, and NKX2-1 syndromes as well as specific
metabolic disorders known to be associated with increased
childhood cancer risk. In addition, the expert panel reviewed
whether sufficient data exist to make a recommendation that
all patients with these disorders be offered cancer surveillance.
For all syndromes, the panel recommends increased awareness

and prompt assessment of clinical symptoms. Patients with
Costello syndrome have the highest cancer risk, and cancer
surveillance should be considered. Regular physical examina-
tions and complete blood counts can be performed in infants
with Noonan syndrome if specific PTPN11 or KRAS mutations
are present, and in patients with CBL syndrome. Also, the high
brain tumor risk in patients with L-2 hydroxyglutaric aciduria
may warrant regular screening with brain MRIs. For most syn-
dromes, surveillance may be needed for nonmalignant health
problems. Clin Cancer Res; 23(12); e83–e90. �2017 AACR.

See all articles in the online-only CCR Pediatric Oncology
Series.

Introduction
A number of rare syndromes are known to be associated with

increased risk of cancer. In contrast with high cancer risk syn-
dromes such as Li-Fraumeni syndrome or constitutional mis-
match repair deficiency, others are associated with a mildly to
moderately increased cancer risk. Herein, we concisely review the
clinical features, genetic basis, and cancer association of several
rare syndromes anddiscuss the need for cancer surveillance as part

of clinical management. A summary of these recommendations is
presented in Tables 1 and 2.

The RASopathies
The RASopathies are a group of disorders that are characterized

by (i) constitutional dysregulation of the Ras signaling pathway,
and (ii) a phenotype resembling Noonan syndrome (NS;
refs. 1–3). NS features include abnormal growth (proportionate
short stature and relative or absolute macrocephaly), congenital
heart defects (most commonly pulmonary stenosis or hypertro-
phic cardiomyopathy), dysmorphism (hypertelorismwith down-
slanting palpebral fissures; ocular ptosis; low-set, posteriorly
rotated ears; broad neck with low hairline; and thorax deformity),
and abnormal skin and adnexa. Additional features may include
learning difficulties, ocular anomalies, feeding problems in infan-
cy, cryptorchidism, disorders of pubertal timing, lymphatic
anomalies, bleeding diathesis, and increased cancer risk. The
group of RASopathies are described in detail below (1–3). Among
these are neurofibromatosis type 1 (NF1); cancer surveillance in
persons with NF1 is discussed in the CCR Pediatric Oncology
Series article by Evans and colleagues (4).

NS is caused by germline mutations of PTPN11 (50%; ref. 5);
SOS1 (13%; refs. 6, 7); RAF1 (5%; refs. 8, 9);RIT1 (5%; ref. 10); or
more rarely, KRAS (11), NRAS (12), BRAF (13), MAP2K1 (14),
RRAS (15), RASA2 (16), A2ML1 (17), SOS2 (18), or LZTR1 (18).
ChildrenwithNS are at an approximately 8-fold increased risk for
a spectrum of different cancers (19). These include (but are not
limited to) gliomas such as dysembryoplastic neuroepithelial
tumors, acute lymphoblastic leukemia, neuroblastoma (NBL),
and rhabdomyosarcoma (19–22). Specific mutations of PTPN11
(most commonly, but not exclusively at codon 61 or T73I;
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refs. 23–26) or KRAS (T58I; ref. 11) are associated with a mye-
loproliferative disorder (NS/MPD) resembling juvenile myelo-
monocytic leukemia (JMML). NS/MPD occurs in neonates and
young infants, starts as a polyclonal disease, and typically resolves
over time. However, some neonates or infants with NS develop
an aggressive monoclonal disease that may be lethal, especially if
left untreated (27, 28).

NS-like with loose anagen hair (NSLAH) is caused by germline
mutations of SHOC2 (29) or more rarely, PPP1CB (30) and is
characterized by NS features, darkly pigmented skin, and ecto-
dermal anomalies. Cancer risk appears to be mildly increased
based on a few reports ofmyelofibrosis andNBL among the small
group (<50) of NSLAH patients described previously (31).

NS with multiple lentigines (NSML) is typically caused by
specific mutations of PTPN11 (T468M and Y279C; ref. 32; other
rare mutations have been reported; ref. 33), and affected indivi-
duals show an NS phenotype with multiple lentigines, frequent
hypertrophic cardiomyopathy, and deafness. As in classic NS,
childhood cancer risk is mildly increased; acute leukemias and a
few other cancers have been reported in approximately 2% of
cases (19).

Cardiofaciocutaneous syndrome (CFCS) is due to germline
mutation ofKRAS (11, 34),MAP2K1 (35),MAP2K2 (35), orBRAF
(34, 35). Affected persons have NS features and tend to have
significant mental and neurologic impairment, more severe ecto-
dermal involvement, and characteristic facies. Several cases of
childhood cancer have been reported, and the cancer risk may be
mildly increased (19, 20).

Costello syndrome (CS) is due to germline mutations ofHRAS
(36). In addition to NS features, CS patients have mental deficits,
poor feeding, hypertrophic cardiomyopathy, tachycardia, typical
skin and hair, a coarse face, and a high childhood cancer risk,
especially for embryonal rhabdomyosarcoma (ERMS), NBL, and
early-onset bladder cancer. The cumulative incidence of cancer is
15% by age 20 years (19, 20, 37, 38). The HRAS G12A mutation
appears to be associated with the highest cancer risk (39).

Legius syndrome (LS) is due to germline SPRED1 mutations
(40). Affected individuals show caf�e-au-lait macules with or
without freckling but lack neurofibromas or NF1-associated
tumors. Theymay demonstrate anNS appearance and/or learning
difficulties. The childhood cancer risk is unclear, but occasional
neoplasms in patients have been reported (40).

Germline mutations of the CBL gene cause CBL syndrome
(CBLS), a variable phenotype characterized by a relatively high
frequency of neurologic features/vasculitis, mild NS features, and
high JMML risk (41). Other cancers [e.g., acute myelogenous
leukemia (AML) and glioma] have also been reported (41, 42).

Proposed Surveillance for Patients with
RASopathies

With a few exceptions, patients with RASopathies have amildly
increased cancer risk justifying increased awareness and prompt
assessment when suspicious clinical symptoms are present. Given
that childhood cancer risk falls below 5% in most of these
syndromes, routine cancer surveillance is probably notwarranted;

Table 1. Summary of cancer surveillance recommendations

Syndrome Childhood cancer risk Surveillance guidelines

I. Surveillance warranted
Costello syndrome 15% by 20 yrs: ERMS, NBL,

bladder cancer
0 to 8–10 yrs: physical exam and AP US � CXR q 3–4 mths
From 10 yrs: annual urinalysis

NS—specific PTPN11 or KRAS mutations High risk of myeloproliferative
disorder/JMML

0 to 5 yrs: physical exam (with assessment of spleen) and CBC with
differential q 3–6 mths

CBL syndrome High but not precisely defined JMML risk;
more rarely other neoplasms

0 to 5 yrs: Physical exam (with assessment of spleen) and CBC with
differential q 3–6 mths

SGS—mild Unknown but may approximate
10–15%: SC-GCT and PNET, HBL

Attention for congenital tumors on baseline imaging for SGS
Consider periodic AP US, AFP/bHCG

II. Baseline only
SGS—severe Unknown but may approximate

10–15%: SC-GCT and PNET, HBL
Attention for congenital tumors on baseline imaging for SGS
Consider addition of AFP/bHCG to baseline bloodwork for SGS

III. No surveillance
For all of the following: <5% or unknown but low likelihood No routine surveillance

Increased awareness and low threshold for investigating new
potential tumor-related symptoms

NS (non-high risk mutations) Dysembryoplastic neuroepithelial
tumors, ALL, NBL, RMS, others

NSLAH e.g., NBL, myelofibrosis
NSML e.g., acute leukemias
CFCS e.g., ALL, NHL
Legius syndrome Few cancers reported to date
Sotos syndrome e.g., NBL, ALL, AML, HBL, SCT, etc.
Weaver syndrome e.g., NBL, hematologic malignancies
Rubinstein–Taybi syndrome e.g., HBL, NBL, RMS, CNS tumors,

carcinomas, etc.
NKX2-1 syndrome No evidence for cancer predisposition

Abbreviations: AFP, alpha-fetoprotein; ALL, acute lymphoblastic leukemia; AML, acute myelogenous leukemia; AP US, abdominopelvic ultrasound; bHCG, beta
human chorionic gonadotrophin; CBC, complete blood count; CFCS, cardiofaciocutaneous syndrome; CNS, central nervous system; CXR, chest x-ray; ERMS,
embryonal rhabdomyosarcoma; HBL, hepatoblastoma; JMML, juvenile myelomonocytic leukemia; mths, months; NBL, neuroblastoma; NHL, non-Hodgkin
lymphoma; NS, Noonan syndrome; NSLAH, Noonan syndrome-like with loose anagen hair; NSML, Noonan syndrome with multiple lentigines; PNET, primitive
neuroectodermal tumor; q, every; RMS; rhabdomyosarcoma; SC-GCT, sacrococcygeal germ cell tumor; SCT, sacrococcygeal teratoma; SGS, Schinzel–Giedion
syndrome; yrs, years.
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however, surveillance may be justified for nonmalignant compli-
cations (e.g., heart defects, vasculitis, endocrine disturbances). In
patients with CBLS or patients with NS due to specific PTPN11 or
KRAS mutations known to be associated with MPD/JMML (see
above), 3 to 6 monthly physical exams with spleen size assess-
ment and complete blood counts with differential should be
considered starting at birth (or diagnosis) and continuing until
age 5 years. There are no data indicating that this strategy leads to a
survival advantage, but the sometimes more aggressive course of
the MPD/JMML in patients with specific RASopathies may justify
this recommendation in selected patients. Treatment may be
necessary for patients with symptoms due to the hematologic
complications and should be discussed with JMML experts.

The high cancer risk in individuals diagnosed with CS (19)
supports cancer surveillance, although its benefit remains to be
proven. For patients with CS, based on previous recommenda-
tions (43), we propose increased awareness and prompt assess-
ment of new symptomology, 3 to 4 monthly physical exams, and
abdominal and pelvic ultrasound examinations to screen for
rhabdomyosarcoma and NBL until age 8 to 10 years, and annual

urinalysis for evidence of hematuria to screen for bladder cancer
beginning at age 10 years (43). Of note, we suggest avoiding
urinary vanillylmandelic acid/Homovanillic acid (VMA/HVA)
for NBL screening in CS due to the high false positive rate in this
population (44). As described in the CCR Pediatric Oncology
Series article on NBL predisposition by Kamihara and colleagues
(45), chest X-ray is a recommended surveillance tool for pati-
ents with a high NBL risk. Although chest X-ray was not part of
previous recommendations for patients with CS (43), inclusion
of chest X-ray in the surveillancemay be discussed with the family
as an option.

Sotos and Weaver Syndromes
Sotos syndrome is caused by heterozygous germlinemutations

in NSD1 and is characterized by a distinctive facial appearance,
height and head circumference >97th percentile, advanced bone
age, and developmental delay (46, 47). Although the childhood
cancer risk is not known, it is likely to be mildly elevated (<5%).
Multiple individuals with Sotos syndrome have been reported to

Table 2. Summary of neoplastic features and surveillance recommendations for selected metabolic disorders

Metabolic pathway/
enzyme

Autosomal
dominant
condition, gene
and OMIM ID#

Autosomal
recessive
condition, gene
and OMIM ID#

X-linked
condition, gene
and OMIM ID#

Associated
cancer(s)

Cancer
surveillance
recommendations

Urea cycle n/a Citrullinemia:
SLC25A13,
#603471

Ornithine
transcarbamylase
deficiency
(OTCD):
OTC, #311250

Associated with
OTCD:

May consider
adding AFP to
scheduled
metabolic
bloodwork in those
without a liver
transplant

Argininosuccinate
lyase
deficiency:
ASL, #207900

Hepatocellular
carcinoma (116)

Arginase
deficiency:
ARG1, #207800

Succinate
dehydrogenase
complex

Familial
pheochromocytoma
and
paraganglioma
syndrome:

Leigh syndrome: SDHA
#600857 SDHB (117)

n/a Associated with autosomal
dominant mutations:

See article by Rednam
et al. (118) in this
series.

SDHA #614165
SDHB #606864
SDHC #606864
SDHD #606864
SDHAF2 #613019

Pheochromocytoma,
paraganglioma,
gastrointestinal stromal
tumor

Cowden
syndrome 2:
SDHB #612359

Cowden syndrome–
associated tumors

L-2-
hydroxydehydrogenase

n/a L-2-
hydroxyglutaric
aciduria:
L2HGDH
#236792

n/a Gliomatosis
brain tumors

Clinical/neurologic
exam every 3–6
months
Annual Brain MRIa

(108)

Tyrosinemia n/a Tyrosinemia:
FAH #276700

n/a Hepatocellular
carcinoma
(risk is reduced
with diet and
nitisinone
treatment)

AFP monthly for
the first 6 months
of life, then every 6
months (114)

Consider baseline
US/MRI of liver

Abbreviations: AFP, alpha-fetoprotein; n/a, not applicable; US, ultrasound.
aWith contrast for the first study, then without contrast thereafter, unless an abnormality is identified.
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develop neoplasms, including ovarian fibromatosis, NBL, acute
lymphoblastic leukemia, acute myelogenous leukemia, hepato-
blastoma, sacrococcygeal teratomas, ganglioneuroma, small cell
lung cancer, ganglioglioma, gastric carcinoma, and testicular
cancer (48–60). Although awareness of cancer risk is important,
routine surveillance is not recommended.

Weaver syndrome is characterized by overgrowth (tall stature),
distinct facial features (hypertelorism, broad forehead, almond-
shaped eyes, pointed chin with horizontal crease, large and fleshy
ears), and variable cognitive disability. Other common character-
istics of Weaver syndrome include doughy skin, camptodactyly,
poor coordination,umbilicalhernia,hoarse cry,advancedboneage,
and hyper- or hypotonia (61). The syndrome is caused primarily by
heterozygousmissensemutations in EZH2 (62, 63). Somatic EZH2
mutations, both activating and inactivating, have been identified in
hematologic malignancies and in solid tumors (64). Tumors have
been reported in individuals with germline EZH2mutations, albeit
infrequently.Onemutation-positive individualdeveloped lympho-
maat age13years, another developedNBLandacute lymphoblastic
leukemia at age 13months, and a third was diagnosed with NBL at
age 4 years. The risk for developingNBLmaybe slightly increased in
individuals with Weaver syndrome, but currently, the numbers are
toosmall to calculate the absolute risk. There isno recommendation
for tumor surveillance at this time, but clinical vigilance andworkup
of potential tumor-related symptoms, especially for NBL, are sug-
gested (61, 65).

Rubinstein–Taybi Syndrome
Rubinstein–Taybi syndrome (RSTS) is characterized by facial

features, including down-slanting palpebral fissures, low colu-
mella, high palate, grimacing smile, and talon cusps, broad
thumbs and great toes, short stature, and intellectual disability
(66, 67). RSTS is inherited in an autosomal dominant manner,
but mutations usually occur de novo. The incidence is approxi-
mately one in 100,000 to 125,000 (68, 69). RSTS is caused
by germline mutations of CREBBP (40%–50%; ref. 70) or EP300
(3%–8%; ref. 71), both affecting a pathway that is also implicated
in cancer (72). Several case reports indicate that individuals with
RSTS are at increased risk of developing cancer, but the cancer risk
is unknown and may be only moderately increased. Different
cancers have been reported in patients with RSTS, including
hepatoblastoma, ovarian and endometrial carcinomas, NBL,
medulloblastoma, meningioma, oligodendroglioma, pheochro-
mocytoma, rhabdomyosarcoma, leiomyosarcoma, seminoma,
and embryonal carcinoma. They may also develop benign
tumors, such as odontoma, choristoma, dermoid cyst, and pilo-
matrixomas (73–81). Because of the unknown cancer risk, firm
cancer surveillance recommendations cannot be made at this
time, but prompt assessment of any new or persistent symptoms
is warranted.

Schinzel–Giedion Syndrome
Individuals with Schinzel–Giedion syndrome (SGS) have

severe developmental delay, distinctive facial features, and mul-
tiple congenital anomalies (particularly skeletal, genitourinary/
renal, and cardiac); most patients die from the condition in the
first decade of life (82). The disorder is caused by de novo muta-
tions of SETBP1 (83), an important gene implicated in myeloid
malignancies (84). Surprisingly, no SGS patients with myeloid
neoplasms have been reported. However, a number of patients

have developed cancer, including sacrococcygeal germ cell tumors
(85–88); sacrococcygeal primitive neuroectodermal tumors (82),
an ependymal tumor with myxopapillary and ependymoblastic
differentiation (89); hepatoblastoma; and a malignant retroper-
itoneal tumor arising in a multicystic dysplastic kidney (90). The
cancer risk is unknown but is likely to be high based on the
number of reported tumors in patients with this condition
(approximately 10 tumors in 70 cases). Families should be made
aware of the increased risk for tumors. The merits of surveillance
need to be weighed against the severity of the patient's clinical
condition. We recommend close attention for the presence of
congenital tumors on baseline diagnostic investigations for SGS
(whichmay include imaging of the spine and abdomen/pelvis for
skeletal/neurologic and renal workup, respectively). Baseline
germ cell and hepatoblastoma tumor markers (alpha-fetopro-
tein—AFP, bHCG) with other baseline syndrome-related blood-
work can be considered. For milder cases, clinicians may consider
ongoing screening with periodic abdominal and pelvic ultra-
sound and periodic measurements of serum AFP and bHCG.

NKX2-1 Syndrome
Loss-of-functionmutations in theNKX2-1 gene (also known as

TTF-1, TITF1, T/EBP), located at 14q13.3, are associated with the
"Brain–Lung–Thyroid syndrome (BLTS)," which is characterized
by (i) benign hereditary chorea (BHC); (ii) infantile respiratory
distress syndrome, which may be fatal; and (iii) congenital hypo-
thyroidism, whichmay present with a ectopic or dysgenetic gland
(91, 92). Familial non-medullary thyroid carcinoma (FNMTC)
represents roughly 5% of thyroid malignancies, and no repro-
ducible susceptibility genes have been consistently associated
with the diagnosis (93–95). Given the role of NXX2-1 role in
thyrocyte differentiation, proliferation, and survival (96), germ-
line mutations in NKX2-1 have been postulated to play a role in
predisposition to thyroid malignancies (97–99). A single case
series demonstrated a recurrent loss-of-function variant of
NKX2-1 (p.A339V) in four of 20 independent kindreds affected
by both papillary thyroid carcinoma (PTC) and multinodular
goiter (MNG; ref. 100). In only one of these families did PTC
segregate with the variant. Further studies have failed to show
germline variants of NKX2-1 in 38 kindreds affected by FNMTC
(101). Similarly, genome-wide association studies have failed
to demonstrate linkage to the NKX2-1 locus on 14q (93, 102).
Thus, it is plausible that the effect of NKX2-1mutation identified
by Ngan and colleagues (100) is more tightly associated with the
MNG phenotype than with PTC.

Although NKX2-1 is reported to be overexpressed in small
cell and adenocarcinoma of the lung, and although there are
rare reports of lung carcinoma arising in individuals with
components of the BLTS (103, 104), the association with
germline NKX2-1 mutation has not been established. At pres-
ent, the available data do not support a strong role for NKX2-1
in predisposition to hereditary lung or thyroid malignancy,
thus we do not recommend screeningNKX2-1mutation carriers
for lung or thyroid cancer.

Metabolic Disorders/Genes
L-2-hydroxyglutaric aciduria is a recessive neurometabolic dis-

order characterized by the presence of high levels of L-2-hydro-
xyglutaric acid in urine, plasma, and cerebrospinal fluid. The
condition is caused by mutations of L2HGA and clinically
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associated with progressive ataxia, mental impairment, subcorti-
cal leukoencephalopathy, and cerebellar atrophy (105). Despite
the rarity of the condition, several cases of brain tumors have been
associated with the disease, including ependymoma, primitive
neuroectodermal tumor, low- and high-grade glioma, medullo-
blastoma, and oligodendroglioma (106, 107). Nephroblastoma
has been reported in one patient (108). Although the cancer risk is
not currently known, the relatively large number of reported brain
tumors suggests that cancer surveillance with 3 to 6 monthly
clinical and neurologic assessments and annual brainMRImay be
warranted (using contrast enhancement for the baseline MRI
only). Notably, D-2-hydroxyglutaric aciduria is due to germline
mutations of IDH2 (109). Although somatic IDH1 and IDH2
mutations occur in brain and other cancers (110, 111) and
somatic mosaic mutations of these genes lead to the Maffuci
syndrome and Ollier disease (which are also associated with
cancer), there does not appear to be documentation of an
increased cancer risk in individuals with germline mutations of
IDH2 (112, 113).

There are othermetabolic conditions that are associatedwith an
increased cancer risk, including tyrosinemia type I (hepatocellular
carcinoma; ref. 114). The risk warrants consideration for baseline
liver imaging along with regular AFP measurements but is dra-
matically reduced when children are treated with nitisinone

(114). It is noteworthy that AFP can be falsely elevated in this
population due to liver adenomas and regeneration (115). A
summary of these recommendations and those for selected other
metabolic disorders is provided in Table 2.

Conclusions
For most of the syndromes discussed in this article, cancer risk

does not justify routine cancer surveillance. However, exceptions
include CS, CBLS, NS with specific high-risk mutations, L-2
hydroxyglutaric aciduria, and tyrosinemia type I (Tables 1 and 2).
It will be important to assess more precise cancer risks and cancer
types by enrolling affected individuals in cancer predisposition
syndrome registries. In addition, for patients in whom surveil-
lance is currently recommended, its benefits, psychosocial impli-
cations for the patient and family, as well as cost, need to be
carefully considered. Finally, cancer prevention strategies remain
an objective for future research.
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